Skip to main content

You will meet too much false precision



Precise numbers and claims - as though there is no margin for error - are all around us. When someone tells you that 54.3% of people with some disease will have a particular outcome, they're basically predicting the future of all groups of people based on what happened to another group of people in the past. Well, what are the chances of exactly that always happening, eh?

If our fortune teller was quoting the mean of a study here, it could be written like this: 67.5% (95% CI: 62%-73%). The CI stands for "confidence interval" and it gives you an idea of how much imprecision or uncertainty there is around the estimate. The confidence level - 95% here, which is common - is chosen when a confidence is calculated. The 95% level means the significance level is at 0.05 (or 5%) - more about that here. It has set the level of uncertainty being measured - how probable it is, that roughly that result would occur.

The chances of the result always being precisely 67.5% can be pretty slim or very high, depending on lots of things. If there is a lot of data, the confidence interval will be narrow: the best case scenario and the worst case scenario will be close together (say, 66% to 69%).

We give ranges for estimates all the time. If someone asks, "How long does it take to get to your house?", we don't say "39.35 minutes". We say, "Usually about half an hour to 45 minutes, depending on the traffic."

In a systematic review, you will often see an outcome of an individual study shown as a line. The length of that line is showing you the width of the confidence interval around the result. It looks something like this:


This is called a forest plot. Find more from Statistically Funny on this in The Forest Plot Trilogy.

What a confidence interval isn't: it doesn't mean that 95% of people's outcomes will be between those upper and lower boundaries. It's where the mean is expected to be likely to fall (or median, or whatever other statistic is being measured).

If the statistical estimates are made with Bayesian methods, the range you will see around an estimate isn't a confidence interval: it's a credible interval. I explain a bit about Bayesian statistics in this post. Unlike a confidence interval, a credible interval has incorporated extra data about the probability of the result falling inside the interval.

Update [4 June 2016]: The American Statistical Association (ASA) issued a statement encouraging people to consider estimates like confidence intervals instead of only looking at p-values and statistical significance. I've written an explanation of that in this post: 5 Tips for Avoiding P-Value Potholes.

Comments

Popular posts from this blog

Benefits Of Healthy eating Turmeric every day for the body

One teaspoon of turmeric a day to prevent inflammation, accumulation of toxins, pain, and the outbreak of cancer.  Yes, turmeric has been known since 2.5 centuries ago in India, as a plant anti-inflammatory / inflammatory, anti-bacterial, and also have a good detox properties, now proven to prevent Alzheimer's disease and cancer. Turmeric prevents inflammation:  For people who

Women and children overboard

It's the  Catch-22  of clinical trials: to protect pregnant women and children from the risks of untested drugs....we don't test drugs adequately for them. In the last few decades , we've been more concerned about the harms of research than of inadequately tested treatments for everyone, in fact. But for "vulnerable populations,"  like pregnant women and children, the default was to exclude them. And just in case any women might be, or might become, pregnant, it was often easier just to exclude us all from trials. It got so bad, that by the late 1990s, the FDA realized regulations and more for pregnant women - and women generally - had to change. The NIH (National Institutes of Health) took action too. And so few drugs had enough safety and efficacy information for children that, even in official circles, children were being called "therapeutic orphans."  Action began on that, too. There is still a long way to go. But this month there was a sign that

Not a word was spoken (but many were learned)

Video is often used in the EFL classroom for listening comprehension activities, facilitating discussions and, of course, language work. But how can you exploit silent films without any language in them? Since developing learners' linguistic resources should be our primary goal (well, at least the blogger behind the blog thinks so), here are four suggestions on how language (grammar and vocabulary) can be generated from silent clips. Split-viewing Split-viewing is an information gap activity where the class is split into groups with one group facing the screen and the other with their back to the screen. The ones facing the screen than report on what they have seen - this can be done WHILE as well as AFTER they watch. Alternatively, students who are not watching (the ones sitting with their backs to the screen) can be send out of the classroom and come up with a list of the questions to ask the 'watching group'. This works particularly well with action or crime scenes with